FACTORISATION - Q&A
EXERCISE 13(A)
1. Multiple Choice Type:
Choose the correct answer from the options given below.
(i) -7x2 - 14y is equal to:
(a) -21x2y
(b) 14x2y
(c) 7(-x2 - 2y)
(d) -7(x2 + 2y)
Solution:
Given expression: -7x2 - 14y
Taking out -7 as the common factor:
= -7(x2 + 2y)
Ans. (d) -7(x2 + 2y)
(ii) a(x - y) - b(x - y)2 is equal to:
(a) (x - y)(a - by + bx)
(b) (y - x)(a - bx + by)
(c) (x - y)(a - bx - by)
(d) (x - y)(a - bx + by)
Solution:
Given expression: a(x - y) - b(x - y)2
Taking (x - y) common:
= (x - y)[a - b(x - y)]
= (x - y)(a - bx + by)
Ans. (d) (x - y)(a - bx + by)
(iii) a2 + bc + ab + ac is equal to:
(a) (a + b)(a + c)
(b) (a + b)(b + c)
(c) (a + c)(a - b)
(d) (a - b)(b + c)
Solution:
Rearranging terms: a2 + ab + ac + bc
= a(a + b) + c(a + b)
= (a + b)(a + c)
Ans. (a) (a + b)(a + c)
(iv) 1 - 2x - 2x2 + 4x3 is equal to:
(a) (1 + 2x)(1 - 2x2)
(b) (1 + 2x)(1 + 2x2)
(c) (1 - 2x)(1 - 2x2)
(d) (1 - 2x)(1 + 2x2)
Solution:
= 1(1 - 2x) - 2x2(1 - 2x)
= (1 - 2x)(1 - 2x2)
Ans. (c) (1 - 2x)(1 - 2x2)
(v) a(x - y) - b(y - x)2 is equal to:
(a) (x - y)(a - by + bx)
(b) (y - x)(a - bx + by)
(c) (x - y)(a - bx - by)
(d) (x - y)(a - bx + by)
Solution:
Note that (y - x)2 = [-(x - y)]2 = (x - y)2
So, expression becomes: a(x - y) - b(x - y)2
= (x - y)[a - b(x - y)]
= (x - y)(a - bx + by)
Ans. (a) (x - y)(a - by + bx) (Note: bx and by positions swapped in option text but mathematically equivalent).
2. 7a6b8 - 34a4b6 + 51a2b4
Solution:
H.C.F of 7, 34, 51 is 17 (Wait, 7 is not divisible by 17. 34=2×17, 51=3×17. There is no common numerical factor other than 1. Wait, scanning error possible. If the first term is 17, then 17 is common. But image says 7. Let's assume numerical HCF is 1.)
H.C.F of a6, a4, a2 is a2.
H.C.F of b8, b6, b4 is b4.
= a2b4(7a4b4 - 34a2b2 + 51)
(Note: If the first number was 17, answer would be 17a2b4(a4b4 - 2a2b2 + 3))
3. 3x5y - 27x4y2 + 12x3y3
Solution:
H.C.F of 3, 27, 12 is 3.
Variables common: x3y
= 3x3y(x2 - 9xy + 4y2)
4. x2(a - b) - y2(a - b) + z2(a - b)
Solution:
Taking (a - b) common:
= (a - b)(x2 - y2 + z2)
5. (x + y)(a + b) + (x - y)(a + b)
Solution:
Taking (a + b) common:
= (a + b)[(x + y) + (x - y)]
= (a + b)(x + y + x - y)
= (a + b)(2x) = 2x(a + b)
6. 2b(2a + b) - 3c(2a + b)
Solution:
Taking (2a + b) common:
= (2a + b)(2b - 3c)
7. 12abc - 6a2b2c2 + 3a3b3c3
Solution:
Common factor: 3abc
= 3abc(4 - 2abc + a2b2c2)
8. 4x(3x - 2y) - 2y(3x - 2y)
Solution:
Taking (3x - 2y) common:
= (3x - 2y)(4x - 2y)
Taking 2 common from second bracket:
= (3x - 2y)2(2x - y)
= 2(3x - 2y)(2x - y)
9. (a + 2b)(3a + b) - (a + b)(a + 2b) + (a + 2b)2
Solution:
Taking (a + 2b) common from all terms:
= (a + 2b)[(3a + b) - (a + b) + (a + 2b)]
= (a + 2b)(3a + b - a - b + a + 2b)
= (a + 2b)(3a + 2b)
10. 6xy(a2 + b2) + 8yz(a2 + b2) - 10xz(a2 + b2)
Solution:
Taking 2(a2 + b2) common:
= 2(a2 + b2)(3xy + 4yz - 5xz)
11. xy - ay - ax + a2 + bx - ab
Solution:
Grouping terms: (xy - ay) - (ax - a2) + (bx - ab)
= y(x - a) - a(x - a) + b(x - a)
= (x - a)(y - a + b)
12. 3x5 - 6x4 - 2x3 + 4x2 + x - 2
Solution:
Grouping: (3x5 - 6x4) - (2x3 - 4x2) + (x - 2)
= 3x4(x - 2) - 2x2(x - 2) + 1(x - 2)
= (x - 2)(3x4 - 2x2 + 1)
13. -x2y - x + 3xy + 3
Solution:
Grouping: (-x2y - x) + (3xy + 3)
= -x(xy + 1) + 3(xy + 1)
= (xy + 1)(3 - x)
14. 6a2 - 3a2b - bc2 + 2c2
Solution:
Grouping: (6a2 - 3a2b) + (2c2 - bc2)
= 3a2(2 - b) + c2(2 - b)
= (2 - b)(3a2 + c2)
15. 3a2b - 12a2 - 9b + 36
Solution:
Grouping: (3a2b - 12a2) - (9b - 36)
= 3a2(b - 4) - 9(b - 4)
= (b - 4)(3a2 - 9)
= (b - 4)3(a2 - 3) = 3(b - 4)(a2 - 3)
16. x2 - (a - 3)x - 3a
Solution:
Opening bracket: x2 - ax + 3x - 3a
= x(x - a) + 3(x - a)
= (x - a)(x + 3)
17. ab2 - (a - c)b - c
Solution:
Opening bracket: ab2 - ab + bc - c
= ab(b - 1) + c(b - 1)
= (b - 1)(ab + c)
18. (a2 - b2)c + (b2 - c2)a
Solution:
Opening brackets: a2c - b2c + ab2 - ac2
Rearranging: a2c - ac2 + ab2 - b2c
= ac(a - c) + b2(a - c)
= (a - c)(ac + b2)
19. a3 - a2 - ab + a + b - 1
Solution:
Rearranging: (a3 - a2) - (ab - b) + (a - 1)
= a2(a - 1) - b(a - 1) + 1(a - 1)
= (a - 1)(a2 - b + 1)
20. ab(c2 + d2) - a2cd - b2cd
Solution:
Opening bracket: abc2 + abd2 - a2cd - b2cd
Rearranging: (abc2 - a2cd) + (abd2 - b2cd)
= ac(bc - ad) - bd(bc - ad)
Note: abd2 - b2cd = bd(ad - bc) = -bd(bc - ad)
= (bc - ad)(ac - bd)
21. 2ab2 - aby + 2cby - cy2
Solution:
Grouping: (2ab2 - aby) + (2cby - cy2)
= ab(2b - y) + cy(2b - y)
= (2b - y)(ab + cy)
22. ax + 2bx + 3cx - 3a - 6b - 9c
Solution:
Grouping: (ax + 2bx + 3cx) - (3a + 6b + 9c)
= x(a + 2b + 3c) - 3(a + 2b + 3c)
= (a + 2b + 3c)(x - 3)
23. 2ab2c - 2a + 3b3c - 3b - 4b2c2 + 4c
Solution:
Grouping: (2ab2c - 2a) + (3b3c - 3b) - (4b2c2 - 4c)
= 2a(b2c - 1) + 3b(b2c - 1) - 4c(b2c - 1)
= (b2c - 1)(2a + 3b - 4c)
EXERCISE 13(B)
1. Multiple Choice Type:
Choose the correct answer from the options given below.
(i) (2x + y)2 - (2y + x)2 is equal to:
(a) 3(x + y)(x - y)
(b) 2(x - y)(x + y)
(c) 2(y - x)(x + y)
(d) (3x + y)(3x - y)
Solution:
Using a2 - b2 = (a + b)(a - b)
= [(2x + y) + (2y + x)][(2x + y) - (2y + x)]
= (3x + 3y)(2x + y - 2y - x)
= 3(x + y)(x - y)
Ans. (a) 3(x + y)(x - y)
(ii) 49 - (x + 5)2 is equal to:
(a) (54 - x)(54 + x)
(b) (2 - x)(12 + x)
(c) 48(x + 5)2
(d) 48(x - 5)2
Solution:
= 72 - (x + 5)2
= [7 + (x + 5)][7 - (x + 5)]
= (7 + x + 5)(7 - x - 5)
= (12 + x)(2 - x)
Ans. (b) (2 - x)(12 + x)
(iii) a2 - 2ab + b2 + a - b is equal to:
(a) (a - b)(a + b - 1)
(b) (a - b)(a + b + 1)
(c) (a + b)(a - b - 1)
(d) (a - b)(a - b + 1)
Solution:
= (a - b)2 + (a - b)
= (a - b)(a - b + 1)
Ans. (d) (a - b)(a - b + 1)
(iv) x2 + y2 - 2xy - 1 is equal to:
(a) (x + y - 1)(x - y - 1)
(b) (x + y + 1)(x - y - 1)
(c) (x + y + 1)(x - y + 1)
(d) (x - y + 1)(x - y - 1)
Solution:
= (x - y)2 - 12
= (x - y + 1)(x - y - 1)
Ans. (d) (x - y + 1)(x - y - 1)
(v) a2 + 2a + 1 - b2 - x2 + 2bx is equal to:
(a) (a + 1 - b + x)(a - 1 - b + x)
(b) (a + 1 + b - x)(a + 1 - b + x)
(c) (a - 1 + b - x)(a - 1 - b + x)
(d) (a - 1 + bx)(a + 1 - bx)
Solution:
= (a2 + 2a + 1) - (b2 + x2 - 2bx)
= (a + 1)2 - (b - x)2
= [(a + 1) + (b - x)][(a + 1) - (b - x)]
= (a + 1 + b - x)(a + 1 - b + x)
Ans. (b) (a + 1 + b - x)(a + 1 - b + x)
2. (a + 2b)2 - a2
Solution:
= (a + 2b + a)(a + 2b - a)
= (2a + 2b)(2b)
= 2(a + b)(2b) = 4b(a + b)
3. (5a - 3b)2 - 16b2
Solution:
= (5a - 3b)2 - (4b)2
= (5a - 3b + 4b)(5a - 3b - 4b)
= (5a + b)(5a - 7b)
4. a4 - (a2 - 3b2)2
Solution:
= (a2)2 - (a2 - 3b2)2
= [a2 + (a2 - 3b2)][a2 - (a2 - 3b2)]
= (2a2 - 3b2)(a2 - a2 + 3b2)
= 3b2(2a2 - 3b2)
5. (5a - 2b)2 - (2a - b)2
Solution:
= [(5a - 2b) + (2a - b)][(5a - 2b) - (2a - b)]
= (7a - 3b)(3a - b)
6. 1 - 25(a + b)2
Solution:
= 12 - [5(a + b)]2
= [1 + 5(a + b)][1 - 5(a + b)]
= (1 + 5a + 5b)(1 - 5a - 5b)
7. 4(2a + b)2 - (a - b)2
Solution:
= [2(2a + b)]2 - (a - b)2
= [2(2a + b) + (a - b)][2(2a + b) - (a - b)]
= (4a + 2b + a - b)(4a + 2b - a + b)
= (5a + b)(3a + 3b)
= 3(5a + b)(a + b)
8. 25(2x + y)2 - 16(x - y)2
Solution:
= [5(2x + y)]2 - [4(x - y)]2
= [5(2x + y) + 4(x - y)][5(2x + y) - 4(x - y)]
= (10x + 5y + 4x - 4y)(10x + 5y - 4x + 4y)
= (14x + y)(6x + 9y)
= 3(14x + y)(2x + 3y)
9. (6 2/3)2 - (2 1/3)2
Solution:
= (20/3)2 - (7/3)2
= (20/3 + 7/3)(20/3 - 7/3)
= (27/3)(13/3) = 9 × 13/3 = 3 × 13 = 39
10. (0.7)2 - (0.3)2
Solution:
= (0.7 + 0.3)(0.7 - 0.3)
= (1.0)(0.4) = 0.4
11. 75(x + y)2 - 48(x - y)2
Solution:
Taking 3 common:
= 3[25(x + y)2 - 16(x - y)2]
= 3[{5(x + y)}2 - {4(x - y)}2]
= 3[5(x + y) + 4(x - y)][5(x + y) - 4(x - y)]
= 3(5x + 5y + 4x - 4y)(5x + 5y - 4x + 4y)
= 3(9x + y)(x + 9y)
12. a2 + 4a + 4 - b2
Solution:
= (a + 2)2 - b2
= (a + 2 + b)(a + 2 - b)
13. a2 - b2 - 2b - 1
Solution:
= a2 - (b2 + 2b + 1)
= a2 - (b + 1)2
= (a + b + 1)(a - b - 1)
14. x2 + 6x + 9 - 4y2
Solution:
= (x + 3)2 - (2y)2
= (x + 3 + 2y)(x + 3 - 2y)
EXERCISE 13(C)
1. Multiple Choice Type:
Choose the correct answer from the options given below.
(i) x2 - 9x - 10 is equal to:
(a) (x - 10)(x + 1)
(b) (x - 10)(x - 1)
(c) (x + 10)(x - 1)
(d) (x + 10)(x + 1)
Solution:
Factors of -10 whose sum is -9 are -10 and 1.
= x2 - 10x + x - 10
= x(x - 10) + 1(x - 10)
= (x - 10)(x + 1)
Ans. (a) (x - 10)(x + 1)
(ii) x2 - 23x + 42 is equal to:
(a) (x - 21)(x + 2)
(b) (x - 21)(x - 2)
(c) (x + 21)(x + 2)
(d) (x + 21)(x - 2)
Solution:
Factors of 42 whose sum is -23 are -21 and -2.
= (x - 21)(x - 2)
Ans. (b) (x - 21)(x - 2)
(iii) (4x2 - 4x + 1) ÷ (2x - 1) is equal to:
(a) 2x + 1
(b) 2x - 1
(c) 2x - 1
(d) none of these
Solution:
Numerator = (2x - 1)2
= (2x - 1)2 / (2x - 1)
= 2x - 1
Ans. (b) 2x - 1
(iv) (x + y)2 - 3(x + y) - 4 is equal to:
(a) (x + y + 4)(x + y - 1)
(b) (x + y + 4)(x + y + 1)
(c) (x + y - 4)(x + y + 1)
(d) (x + y - 4)(x + y - 1)
Solution:
Let a = x + y. Expression: a2 - 3a - 4
Factors of -4 summing to -3 are -4 and 1.
= (a - 4)(a + 1)
= (x + y - 4)(x + y + 1)
Ans. (c) (x + y - 4)(x + y + 1)
(v) 60 + 11x - x2 is equal to:
(a) (4 + x)(15 - x)
(b) (4 - x)(15 - x)
(c) (4 + x)(15 - x)
(d) (4 + x)(15 + x)
Solution:
= -(x2 - 11x - 60)
Factors of -60 summing to -11 are -15 and 4.
= -(x - 15)(x + 4)
= (15 - x)(4 + x)
Ans. (a) (4 + x)(15 - x)
2. a2 + 5a + 6
Solution:
Factors of 6 summing to 5: 3, 2.
= (a + 3)(a + 2)
3. a2 - 5a + 6
Solution:
Factors of 6 summing to -5: -3, -2.
= (a - 3)(a - 2)
4. a2 + 5a - 6
Solution:
Factors of -6 summing to 5: 6, -1.
= (a + 6)(a - 1)
5. x2 + 5xy + 4y2
Solution:
Factors of 4 summing to 5: 4, 1.
= x2 + 4xy + xy + 4y2
= x(x + 4y) + y(x + 4y)
= (x + 4y)(x + y)
6. a2 - 3a - 40
Solution:
Factors of -40 summing to -3: -8, 5.
= (a - 8)(a + 5)
7. x2 - x - 72
Solution:
Factors of -72 summing to -1: -9, 8.
= (x - 9)(x + 8)
8. 3a2 - 5a + 2
Solution:
Product = 3 × 2 = 6. Sum = -5. Factors: -3, -2.
= 3a2 - 3a - 2a + 2
= 3a(a - 1) - 2(a - 1)
= (a - 1)(3a - 2)
9. 2a2 - 17ab + 26b2
Solution:
Product = 2 × 26 = 52. Sum = -17. Factors: -4, -13.
= 2a2 - 4ab - 13ab + 26b2
= 2a(a - 2b) - 13b(a - 2b)
= (a - 2b)(2a - 13b)
10. 2x2 + xy - 6y2
Solution:
Product = -12. Sum = 1. Factors: 4, -3.
= 2x2 + 4xy - 3xy - 6y2
= 2x(x + 2y) - 3y(x + 2y)
= (x + 2y)(2x - 3y)
11. 4c2 + 3c - 10
Solution:
Product = -40. Sum = 3. Factors: 8, -5.
= 4c2 + 8c - 5c - 10
= 4c(c + 2) - 5(c + 2)
= (c + 2)(4c - 5)
12. 14x2 + x - 3
Solution:
Product = -42. Sum = 1. Factors: 7, -6.
= 14x2 + 7x - 6x - 3
= 7x(2x + 1) - 3(2x + 1)
= (2x + 1)(7x - 3)
13. 6 + 7b - 3b2
Solution:
Product = -18. Sum = 7. Factors: 9, -2.
= 6 + 9b - 2b - 3b2
= 3(2 + 3b) - b(2 + 3b)
= (2 + 3b)(3 - b)
14. 5 + 7x - 6x2
Solution:
Product = -30. Sum = 7. Factors: 10, -3.
= 5 + 10x - 3x - 6x2
= 5(1 + 2x) - 3x(1 + 2x)
= (1 + 2x)(5 - 3x)
15. 4 + y - 14y2
Solution:
Product = -56. Sum = 1. Factors: 8, -7.
= 4 + 8y - 7y - 14y2
= 4(1 + 2y) - 7y(1 + 2y)
= (1 + 2y)(4 - 7y)
16. 5 + 3a - 14a2
Solution:
Product = -70. Sum = 3. Factors: 10, -7.
= 5 + 10a - 7a - 14a2
= 5(1 + 2a) - 7a(1 + 2a)
= (1 + 2a)(5 - 7a)
17. (2a + b)2 + 5(2a + b) + 6
Solution:
Let x = 2a + b. Expression: x2 + 5x + 6
= (x + 2)(x + 3)
= (2a + b + 2)(2a + b + 3)
18. 1 - (2x + 3y) - 6(2x + 3y)2
Solution:
Let u = 2x + 3y. Expression: 1 - u - 6u2
Product = -6. Sum = -1. Factors: -3, 2.
= 1 - 3u + 2u - 6u2
= 1(1 - 3u) + 2u(1 - 3u)
= (1 - 3u)(1 + 2u)
= [1 - 3(2x + 3y)][1 + 2(2x + 3y)]
= (1 - 6x - 9y)(1 + 4x + 6y)
19. (x - 2y)2 - 12(x - 2y) + 32
Solution:
Let u = x - 2y. Expression: u2 - 12u + 32
Factors of 32 summing to -12: -8, -4.
= (u - 8)(u - 4)
= (x - 2y - 8)(x - 2y - 4)
20. 8 + 6(a + b) - 5(a + b)2
Solution:
Let x = a + b. Expression: 8 + 6x - 5x2
Product = -40. Sum = 6. Factors: 10, -4.
= 8 + 10x - 4x - 5x2
= 2(4 + 5x) - x(4 + 5x)
= (4 + 5x)(2 - x)
= (4 + 5a + 5b)(2 - a - b)
21. 2(x + 2y)2 - 5(x + 2y) + 2
Solution:
Let u = x + 2y. Expression: 2u2 - 5u + 2
Product = 4. Sum = -5. Factors: -4, -1.
= 2u2 - 4u - u + 2
= 2u(u - 2) - 1(u - 2)
= (u - 2)(2u - 1)
= (x + 2y - 2)(2(x + 2y) - 1)
= (x + 2y - 2)(2x + 4y - 1)
22. In each case, find whether the trinomial is a perfect square or not:
(i) x2 + 14x + 49
Solution:
x2 + 2(7)x + 72 = (x + 7)2. Yes.
(ii) a2 - 10a + 25
Solution:
a2 - 2(5)a + 52 = (a - 5)2. Yes.
(iii) 4x2 + 4x + 1
Solution:
(2x)2 + 2(2x)(1) + 12 = (2x + 1)2. Yes.
(iv) 9b2 + 12b + 16
Solution:
(3b)2 + 12b + 42. Middle term for perfect square should be 2(3b)(4) = 24b. Here it is 12b. No.
(v) 16x2 - 16xy + y2
Solution:
(4x)2 - 16xy + y2. Middle term should be 2(4x)(y) = 8xy. Here it is 16xy. No.
(vi) x2 - 4x + 16
Solution:
x2 - 4x + 42. Middle term should be 2(x)(4) = 8x. Here it is 4x. No.
EXERCISE 13(D)
1. Multiple Choice Type:
Choose the correct answer from the options given below.
(i) x3 - 4x is equal to:
(a) x(x + 4)(x - 4)
(b) x(x + 2)(x - 2)
(c) (x + 4)(x - 4)
(d) (x + 2)(x - 2)
Solution:
= x(x2 - 4)
= x(x2 - 22)
= x(x + 2)(x - 2)
Ans. (b) x(x + 2)(x - 2)
(ii) x4 - y4 + x2 - y2 is equal to:
(a) (x + y + 1)(x + y - 1)(x2 + y2)
(b) (x + y)(x - y)(x2 + y2 - 1)
(c) (x + y)(x - y)(x2 + y2 + 1)
(d) none of these
Solution:
= (x2 - y2)(x2 + y2) + (x2 - y2)
= (x2 - y2)(x2 + y2 + 1)
= (x + y)(x - y)(x2 + y2 + 1)
Ans. (c) (x + y)(x - y)(x2 + y2 + 1)
(iii) x3 - x2 + ax + x - a - 1 is equal to:
(a) (x - 1)(x2 + a - 1)
(b) (x - 1)(x2 + a + 1)
(c) (x - 1)(x2 - a + 1)
(d) (x - 1)(x2 - a - 1)
Solution:
Rearranging: x3 - x2 + x - 1 + ax - a
= x2(x - 1) + 1(x - 1) + a(x - 1)
= (x - 1)(x2 + 1 + a)
Ans. (b) (x - 1)(x2 + a + 1)
(iv) 8x3 - 18x is equal to:
(a) x(2x + 3)(2x - 3)
(b) 2x(3 - 2x)(3 + 2x)
(c) 2x(2x + 3)(2x - 3)
(d) x(4x + 6y)(4x - 6y)
Solution:
= 2x(4x2 - 9)
= 2x((2x)2 - 32)
= 2x(2x + 3)(2x - 3)
Ans. (c) 2x(2x + 3)(2x - 3)
(v) x2 - (a - b)x - ab is equal to:
(a) (x - a)(x - b)
(b) (x + a)(x - b)
(c) (x - a)(x + b)
(d) (x + a)(x + b)
Solution:
= x2 - ax + bx - ab
= x(x - a) + b(x - a)
= (x - a)(x + b)
Ans. (c) (x - a)(x + b)
2. 8x2y - 18y3
Solution:
= 2y(4x2 - 9y2)
= 2y((2x)2 - (3y)2)
= 2y(2x + 3y)(2x - 3y)
3. 25x3 - x
Solution:
= x(25x2 - 1)
= x((5x)2 - 12)
= x(5x + 1)(5x - 1)
4. 16x4 - 81y4
Solution:
= (4x2)2 - (9y2)2
= (4x2 + 9y2)(4x2 - 9y2)
= (4x2 + 9y2)((2x)2 - (3y)2)
= (4x2 + 9y2)(2x + 3y)(2x - 3y)
5. x2 - y2 - 3x - 3y
Solution:
= (x + y)(x - y) - 3(x + y)
= (x + y)(x - y - 3)
6. x2 - y2 - 2x + 2y
Solution:
= (x + y)(x - y) - 2(x - y)
= (x - y)(x + y - 2)
7. 3x2 + 15x - 72
Solution:
= 3(x2 + 5x - 24)
Factors of -24 summing to 5: 8, -3.
= 3(x + 8)(x - 3)
8. 2a2 - 8a - 64
Solution:
= 2(a2 - 4a - 32)
Factors of -32 summing to -4: -8, 4.
= 2(a - 8)(a + 4)
9. 3x2y + 11xy + 6y
Solution:
= y(3x2 + 11x + 6)
Product 18, Sum 11. Factors: 9, 2.
= y(3x2 + 9x + 2x + 6)
= y[3x(x + 3) + 2(x + 3)]
= y(3x + 2)(x + 3)
10. 5ap2 + 11ap + 2a
Solution:
= a(5p2 + 11p + 2)
Product 10, Sum 11. Factors: 10, 1.
= a(5p2 + 10p + p + 2)
= a[5p(p + 2) + 1(p + 2)]
= a(5p + 1)(p + 2)
11. a2 + 2ab + b2 - c2
Solution:
= (a + b)2 - c2
= (a + b + c)(a + b - c)
12. x2 + 6xy + 9y2 + x + 3y
Solution:
= (x + 3y)2 + 1(x + 3y)
= (x + 3y)(x + 3y + 1)
13. 4a2 - 12ab + 9b2 + 4a - 6b
Solution:
= (2a - 3b)2 + 2(2a - 3b)
= (2a - 3b)(2a - 3b + 2)
14. 2a2b2 - 98b4
Solution:
= 2b2(a2 - 49b2)
= 2b2(a + 7b)(a - 7b)
15. a2 - 16b2 - 2a - 8b
Solution:
= (a + 4b)(a - 4b) - 2(a + 4b)
= (a + 4b)(a - 4b - 2)
Test yourself
1. Multiple Choice Type:
Choose the correct answer from the options given below.
(i) (a + b)2 - 4ab is equal to:
(a) (a + b + 2ab)(a + b - 2ab)
(b) (a + b)(a - b)
(c) (a + b)(a + b)
(d) (a - b)(a - b)
Solution:
= a2 + 2ab + b2 - 4ab
= a2 - 2ab + b2
= (a - b)2
Ans. (d) (a - b)(a - b)
(ii) a4 + 4a2 - 32 is equal to :
(a) (a2 + 8)(a + 2)(a + 2)
(b) (a2 - 8)(a - 2)(a + 2)
(c) (a2 + 8)(a2 + 4)
(d) (a2 + 8)(a + 2)(a - 2)
Solution:
Let x = a2. Expression: x2 + 4x - 32
Factors of -32 sum to 4: 8, -4.
= (x + 8)(x - 4)
= (a2 + 8)(a2 - 4)
= (a2 + 8)(a + 2)(a - 2)
Ans. (d) (a2 + 8)(a + 2)(a - 2)
(iii) -60y + 25y2 is equal to:
(a) (3 + 5y)(3 + 5y)
(b) (3 - 5y)(6 - 5y)
(c) (3 + 4y)(3 - 4y)
(d) none of these
Solution:
Note: The question text appears incomplete in the source image (likely "36 - 60y + 25y^2").
However, based on the provided text, -60y + 25y2 = 5y(5y - 12). None of the options match this result directly.
If we assume the question is 36 - 60y + 25y2, then = (6 - 5y)2. None of the options exactly match this either.
Given the options, none seem correct for the fragment provided.
Ans. (d) none of these
(iv) (x - 2y)2 - 3x + 6y is equal to:
(a) (x - 3y)(x + 2y)
(b) (x - 2y)(x - 2y + 3)
(c) (x + 2y - 3)(x + 2y)
(d) (x - 2y)(x - 2y - 3)
Solution:
= (x - 2y)2 - 3(x - 2y)
= (x - 2y)(x - 2y - 3)
Ans. (d) (x - 2y)(x - 2y - 3)
(v) a(x - y)2 - by + bx is equal to :
(a) (x - y)(ax + by + b)
(b) (x - y)(ax + by - b)
(c) (x - y)(x + y + a - b)
(d) (x - y)(ax - ay + b)
Solution:
= a(x - y)2 + b(x - y)
= (x - y)[a(x - y) + b]
= (x - y)(ax - ay + b)
Ans. (d) (x - y)(ax - ay + b)
(vi) Statement 1: The product of two binomials is a trinomial, conversely if we factorise a trinomial we always obtain two binomial factors.
Statement 2: The square of the difference of two terms = The sum of the same two terms x their difference.
Which of the following options is correct?
(a) Both the statements are true.
(b) Both the statements are false.
(c) Statement 1 is true, and statement 2 is false.
(d) Statement 1 is false, and statement 2 is true.
Solution:
Statement 1 is false (e.g., product of (x+1)(x-1) = x2 - 1, which is a binomial).
Statement 2 is false (This describes a2 - b2, not (a-b)2).
Ans. (b) Both the statements are false.
The following questions are Assertion-Reason based questions. Choose your answer based on the codes given below.
(1) Both A and R are correct, and R is the correct explanation for A.
(2) Both A and R are correct, and R is not the correct explanation for A.
(3) A is true, but R is false.
(4) A is false, but R is true.
(vii) Assertion (A): 25x2 - 5x + 1 is a perfect square trinomial.
Reason (R): Any trinomial which can be expressed as x2 + y2 + 2xy or x2 + y2 - 2xy is a perfect square trinomial.
Solution:
Check A: (5x)2 - 5x + 12. Middle term should be 2(5x)(1) = 10x. It is 5x. So A is False.
Check R: True (definition of perfect square trinomial).
Ans. (4) A is false, but R is true.
(viii) Assertion (A): x2 + 7x + 12 = (x + 4)(x + 3)
Reason (R): To factorise a given trinomial, the product of the first and the last term of the trinomial is always the sum of the two parts when we split the middle term.
Solution:
Check A: True.
Check R: False. The product of the two parts must equal the product of first and last terms. Their sum must equal the middle term.
Ans. (3) A is true, but R is false.
(ix) Assertion (A): The value of k so that the factors of (x2 - kx + 121/16) are the same is 11/2.
Reason(R): (x + a)(x + b) = x2 + (a + b)x + ab
Solution:
For factors to be the same, it must be a perfect square.
x2 - kx + (11/4)2 = (x - 11/4)2
k = 2(11/4) = 11/2. A is True.
R is the identity for multiplication, but doesn't explicitly explain the condition for equal factors (perfect square) as directly as the discriminant, though it is the basis. However, since A is true and R is a correct identity, but R is the general formula for factorization, usually "correct explanation" implies the specific condition ($b^2-4ac=0$).
However, looking at the context, this maps to code (2) or (1). Let's assume (1) as it explains the structure of the trinomial.
Ans. (1) Both A and R are correct, and R is the correct explanation for A. (or 2 depending on strictness).
(x) Assertion (A): There are two values of b so that x2 + by - 24 is factorisable.
Reason (R): Two values have Product = -24 and sum = 2.
Solution:
A implies b can only have 2 values. If we consider integer factorization, b can be ±2, ±5, ±10, ±23. So A is False.
R is a true statement (6 and -4 have product -24 and sum 2).
Ans. (4) A is false, but R is true.
2. Factorise:
(i) 6x3 - 8x2
Solution:
= 2x2(3x - 4)
(ii) 36x2y2 - 30x3y3 + 48x3y2
Solution:
= 6x2y2(6 - 5xy + 8x)
(iii) 8(2a + 3b)3 - 12(2a + 3b)2
Solution:
= 4(2a + 3b)2[2(2a + 3b) - 3]
= 4(2a + 3b)2(4a + 6b - 3)
(iv) 9a(x - 2y)4 - 12a(x - 2y)3
Solution:
= 3a(x - 2y)3[3(x - 2y) - 4]
= 3a(x - 2y)3(3x - 6y - 4)
3. Factorise:
(i) a2 - ab(1 - b) - b3
Solution:
= a2 - ab + ab2 - b3
= a(a - b) + b2(a - b)
= (a - b)(a + b2)
(ii) xy2 + (x - 1)y - 1
Solution:
= xy2 + xy - y - 1
= xy(y + 1) - 1(y + 1)
= (y + 1)(xy - 1)
(iii) (ax + by)2 + (bx - ay)2
Solution:
= a2x2 + b2y2 + 2abxy + b2x2 + a2y2 - 2abxy
= a2x2 + b2x2 + b2y2 + a2y2
= x2(a2 + b2) + y2(b2 + a2)
= (a2 + b2)(x2 + y2)
(iv) ab(x2 + y2) - xy(a2 + b2)
Solution:
= abx2 + aby2 - a2xy - b2xy
= abx2 - a2xy + aby2 - b2xy
= ax(bx - ay) - by(-ay + bx)
= (bx - ay)(ax - by)
(v) m - 1 - (m - 1)2 + am - a
Solution:
= (m - 1) - (m - 1)2 + a(m - 1)
= (m - 1)[1 - (m - 1) + a]
= (m - 1)(1 - m + 1 + a)
= (m - 1)(2 - m + a)
4. Factorise :
(i) 25(2x - y)2 - 16(x - 2y)2
Solution:
= [5(2x - y)]2 - [4(x - 2y)]2
= [5(2x - y) + 4(x - 2y)][5(2x - y) - 4(x - 2y)]
= (10x - 5y + 4x - 8y)(10x - 5y - 4x + 8y)
= (14x - 13y)(6x + 3y)
= 3(2x + y)(14x - 13y)
(ii) 16(5x + 4)2 - 9(3x - 2)2
Solution:
= [4(5x + 4)]2 - [3(3x - 2)]2
= [4(5x + 4) + 3(3x - 2)][4(5x + 4) - 3(3x - 2)]
= (20x + 16 + 9x - 6)(20x + 16 - 9x + 6)
= (29x + 10)(11x + 22)
= 11(29x + 10)(x + 2)
(iii) 25(x - 2y)2 - 4
Solution:
= [5(x - 2y)]2 - 22
= [5(x - 2y) + 2][5(x - 2y) - 2]
= (5x - 10y + 2)(5x - 10y - 2)
5. Factorise:
(i) a2 - 23a + 42
Solution:
= (a - 21)(a - 2)
(ii) a2 - 23a - 108
Solution:
Factors of -108 summing to -23: -27, 4.
= (a - 27)(a + 4)
(iii) 1 - 18x - 63x2
Solution:
Product = -63. Sum = -18. Factors: -21, 3.
= 1 + 3x - 21x - 63x2
= 1(1 + 3x) - 21x(1 + 3x)
= (1 + 3x)(1 - 21x)
(iv) 5x2 - 4xy - 12y2
Solution:
Product = -60. Sum = -4. Factors: -10, 6.
= 5x2 - 10xy + 6xy - 12y2
= 5x(x - 2y) + 6y(x - 2y)
= (x - 2y)(5x + 6y)
(v) x(3x + 14) + 8
Solution:
= 3x2 + 14x + 8
Product = 24. Sum = 14. Factors: 12, 2.
= 3x2 + 12x + 2x + 8
= 3x(x + 4) + 2(x + 4)
= (x + 4)(3x + 2)
(vi) 5 - 4x(1 + 3x)
Solution:
= 5 - 4x - 12x2
Product = -60. Sum = -4. Factors: -10, 6.
= 5 - 10x + 6x - 12x2
= 5(1 - 2x) + 6x(1 - 2x)
= (1 - 2x)(5 + 6x)
(vii) x2y2 - 3xy - 40
Solution:
Let u = xy. u2 - 3u - 40.
= (u - 8)(u + 5)
= (xy - 8)(xy + 5)
(viii) (3x - 2y)2 - 5(3x - 2y) - 24
Solution:
Let u = 3x - 2y. u2 - 5u - 24.
= (u - 8)(u + 3)
= (3x - 2y - 8)(3x - 2y + 3)
(ix) 12(a + b)2 - (a + b) - 35
Solution:
Let x = a + b. 12x2 - x - 35.
Product = -420. Sum = -1. Factors: -21, 20.
= 12x2 - 21x + 20x - 35
= 3x(4x - 7) + 5(4x - 7)
= (4x - 7)(3x + 5)
= (4(a + b) - 7)(3(a + b) + 5)
6. Factorise:
(i) 15(5x - 4)2 - 10(5x - 4)
Solution:
= 5(5x - 4)[3(5x - 4) - 2]
= 5(5x - 4)(15x - 12 - 2)
= 5(5x - 4)(15x - 14)
(ii) 3a2x - bx + 3a2 - b
Solution:
= x(3a2 - b) + 1(3a2 - b)
= (3a2 - b)(x + 1)
(iii) b(c - d)2 + a(d - c) + 3(c - d)
Solution:
= b(c - d)2 - a(c - d) + 3(c - d)
= (c - d)[b(c - d) - a + 3]
= (c - d)(bc - bd - a + 3)
(iv) ax2 + b2y - ab2 - x2y
Solution:
= (ax2 - ab2) - (x2y - b2y)
= a(x2 - b2) - y(x2 - b2)
= (x2 - b2)(a - y)
= (x + b)(x - b)(a - y)
(v) 1 - 3x - 3y - 4(x + y)2
Solution:
= 1 - 3(x + y) - 4(x + y)2
Let u = x + y. 1 - 3u - 4u2
= 1 - 4u + u - 4u2
= 1(1 - 4u) + u(1 - 4u)
= (1 - 4u)(1 + u)
= (1 - 4x - 4y)(1 + x + y)
7. Factorise:
(i) 2a3 - 50a
Solution:
= 2a(a2 - 25)
= 2a(a + 5)(a - 5)
(ii) 54a2b2 - 6
Solution:
= 6(9a2b2 - 1)
= 6[(3ab)2 - 12]
= 6(3ab + 1)(3ab - 1)
(iii) 64a2b - 144b3
Solution:
= 16b(4a2 - 9b2)
= 16b[(2a)2 - (3b)2]
= 16b(2a + 3b)(2a - 3b)
(iv) (2x - y)3 - (2x - y)
Solution:
= (2x - y)[(2x - y)2 - 1]
= (2x - y)(2x - y + 1)(2x - y - 1)
(v) x2 - 2xy + y2 - z2
Solution:
= (x - y)2 - z2
= (x - y + z)(x - y - z)
(vi) x2 - y2 - 2yz - z2
Solution:
= x2 - (y2 + 2yz + z2)
= x2 - (y + z)2
= (x + y + z)(x - y - z)
(vii) 7a5 - 567a
Solution:
= 7a(a4 - 81)
= 7a((a2)2 - 92)
= 7a(a2 + 9)(a2 - 9)
= 7a(a2 + 9)(a + 3)(a - 3)
(viii) 5x2 - 20x4/9
Solution:
= 5x2(1 - 4x2/9)
= 5x2(12 - (2x/3)2)
= 5x2(1 + 2x/3)(1 - 2x/3)
8. Factorise xy2 - xz2, Hence, find the value of:
(i) 9 × 82 - 9 × 22
Solution:
Factorisation: xy2 - xz2 = x(y2 - z2) = x(y + z)(y - z)
Value: Here x = 9, y = 8, z = 2
= 9(8 + 2)(8 - 2)
= 9(10)(6) = 540
(ii) 40 × 5.52 - 40 × 4.52
Solution:
Here x = 40, y = 5.5, z = 4.5
= 40(5.5 + 4.5)(5.5 - 4.5)
= 40(10)(1) = 400
9. Factorise :
(i) (a - 3b)2 - 36b2
Solution:
= (a - 3b)2 - (6b)2
= (a - 3b + 6b)(a - 3b - 6b)
= (a + 3b)(a - 9b)
(ii) 25(a - 5b)2 - 4(a - 3b)2
Solution:
= [5(a - 5b)]2 - [2(a - 3b)]2
= [5a - 25b + 2a - 6b][5a - 25b - (2a - 6b)]
= (7a - 31b)(3a - 19b)
(iii) a2 - 0.36b2
Solution:
= a2 - (0.6b)2
= (a + 0.6b)(a - 0.6b)
(iv) x4 - 5x2 - 36
Solution:
Let u = x2. u2 - 5u - 36.
Factors of -36 summing to -5: -9, 4.
= (u - 9)(u + 4)
= (x2 - 9)(x2 + 4)
= (x + 3)(x - 3)(x2 + 4)
(v) 15(2x - y)2 - 16(2x - y) - 15
Solution:
Let u = 2x - y. 15u2 - 16u - 15.
Product = -225. Sum = -16. Factors: -25, 9.
= 15u2 - 25u + 9u - 15
= 5u(3u - 5) + 3(3u - 5)
= (3u - 5)(5u + 3)
= (3(2x - y) - 5)(5(2x - y) + 3)
= (6x - 3y - 5)(10x - 5y + 3)
10. Evaluate (using factors): 3012 × 300 - 3003
Solution:
= 300(3012 - 3002)
= 300(301 + 300)(301 - 300)
= 300(601)(1)
= 180300
11. Use factor method to evaluate :
(i) (5z2 - 80) ÷ (z - 4)
Solution:
Numerator = 5(z2 - 16) = 5(z + 4)(z - 4)
Expression = 5(z + 4)(z - 4) / (z - 4)
= 5(z + 4)
(ii) 10y(6y + 21) ÷ (2y + 7)
Solution:
Numerator = 10y × 3(2y + 7) = 30y(2y + 7)
Expression = 30y(2y + 7) / (2y + 7)
= 30y
(iii) (a2 - 14a - 32) ÷ (a + 2)
Solution:
Numerator: a2 - 14a - 32 = (a - 16)(a + 2)
Expression = (a - 16)(a + 2) / (a + 2)
= a - 16
(iv) 39x3(50x2 - 98) ÷ 26x2(5x + 7)
Solution:
Numerator = 39x3 × 2(25x2 - 49) = 78x3(5x + 7)(5x - 7)
Expression = [78x3(5x + 7)(5x - 7)] / [26x2(5x + 7)]
= (78/26)x3-2(5x - 7)
= 3x(5x - 7)